OI Problems   关于

#023063. Count GCD

时间限制:2 s       空间限制:250 MiB       标签: 数学 组合数学 容斥原理 数论 最大公约数 CodeForces 缺题解 

算法难度等级:0       思维难度等级:0       实现难度等级:0


本题来源于:CodeTON Round 3 (Div. 1 + Div. 2, Rated, Prizes!) Problem D

题目描述

给定 n,mn, m ,和一个数列 aa,问你有多少种方案构造一个长度为 nn 的序列 bb,满足下的条件:

  1. i,bi[1,m]\forall i,b_i\in[1,m];
  2. i,gcdj=1ibi=ai\displaystyle \forall i,\gcd_{j=1}^i b_i=a_i.

You are given two integers nn and mm and an array aa of nn integers. For each 1in1 \le i \le n it holds that 1aim1 \le a_i \le m .

Your task is to count the number of different arrays bb of length nn such that:

  • 1bim1 \le b_i \le m for each 1in1 \le i \le n , and
  • gcd(b1,b2,b3,,bi)=ai\gcd(b_1,b_2,b_3,\cdots,b_i) = a_i for each 1in1 \le i \le n .

Here gcd(a1,a2,,ai)\gcd(a_1,a_2,\cdots,a_i) denotes the greatest common divisor (GCD) of integers a1,a2,,aia_1,a_2,\ldots,a_i .

Since this number can be too large, print it modulo 998244353998\,244\,353 .

输入格式

Each test consist of multiple test cases. The first line contains a single integer tt (1t1001 \le t \le 100) — the number of test cases. The description of test cases follows.

The first line of each test case contains two integers nn and mm (1n21051 \le n \le 2 \cdot 10^5, 1m1091 \le m \le 10^9) — the length of the array aa and the maximum possible value of the element.

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n (1aim1 \le a_i \le m) — the elements of the array aa .

It is guaranteed that the sum of nn across all test cases doesn't exceed 21052 \cdot 10^5 .

输出格式

For each test case, print a single integer — the number of different arrays satisfying the conditions above. Since this number can be large, print it modulo 998244353998\,244\,353 .

样例输入输出

5
3 5
4 2 1
2 1
1 1
5 50
2 3 5 2 3
4 1000000000
60 30 1 1
2 1000000000
1000000000 2
3
1
0
595458194
200000000

提示

In the first test case, the possible arrays bb are:

  • [4,2,1][4,2,1];
  • [4,2,3][4,2,3];
  • [4,2,5][4,2,5].

In the second test case, the only array satisfying the demands is [1,1][1,1] .

In the third test case, it can be proven no such array exists.